Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a }}$ *

Peter Bubenitschek, ${ }^{\text {b }}$
Henning Hopf ${ }^{\text {b }}$ and Bernhard Witulski ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.133$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

[2.2](2,5)Furanoparacyclophane-12,13dicarbaldehyde

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$, the furan ring makes an angle of $22.0(1)^{\circ}$ with the plane of the four non-bridgehead C atoms of the six-membered ring. The molecules are linked by a short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction to form helical chains parallel to the b axis.

Comment

In our studies of the addition of highly reactive triple-bond dienophiles to strained aromatic compounds, we prepared the dinitrile (1) by the addition of cyanoacetylene to [2.2](2,5)furanoparacyclophane (Hopf \& Witulski, 1995; Witulski, 1992). To utilize this adduct for further transformations, we have reduced the nitrile to the bis-aldehyde, (2), using diisobutyl aluminium hydride (DIBAH) (Witulski, 1992).

The structure of (2) is shown in Fig. 1. The six-membered ring shows the flattened boat form typical of paracyclophanes, with atom C3 lying 0.160 (3) \AA and C6 0.170 (3) \AA out of the plane of the other four atoms. The angle between the plane of these four atoms and the pane of the furan ring (r.m.s. deviation $0.02 \AA$) is $22.0(1)^{\circ}$.

The packing is determined by a short $\mathrm{C} 1-\mathrm{H} 1 b \cdots \mathrm{O} 3$ interaction (Table 1), which links adjacent molecules related by the 2_{1} screw axis, to form helical chains with an overall direction parallel to the b axis (Fig. 2). There are two such chains per unit cell.

Experimental

The title compound was prepared according to Witulski (1992) and was recrystallized from chloroform/pentane.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \\
& M_{r}=254.27 \\
& \text { Monoclinic, } P 2_{\mathrm{A}} / c \\
& a=13.813(3) \AA \\
& b=8.909(3) \AA \\
& c=10.658(3) \AA \\
& \beta=107.44(2)^{\circ}{ }^{\circ} \AA^{3} \\
& V=1251.3(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 9 January 2003 Accepted 10 January 2003 Online 17 January 2003

Figure 1
The molecule of compound (2) in the crystal. Ellipsoids are drawn at the 30% probability level and H -atom radii are arbitrary.

Data collection

Nicolet $R 3$ diffractometer ω scans
Absorption correction: none 3018 measured reflections 2857 independent reflections 1807 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.133$
$S=1.02$
2857 reflections
172 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \theta_{\max }=27.6^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-1 \rightarrow 11 \\
& l=0 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 147 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{OB}^{\mathrm{i}}$	0.99	2.45	$3.393(3)$	160

Symmetry code: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.

Figure 2
Packing diagram of compound (2). Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted. The view direction is perpendicular to (101).

H atoms were included using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ bond lengths ($s p^{2} \mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{CH}_{2}=0.98 \AA$); $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times the $U_{\text {eq }}$ values of the parent atom.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Hopf, H. \& Witulski, B. (1995). Modern Acetylene Chemistry, edited by P. J. Stang and F. Diederich, pp. 33-66. Weinheim: VCH Verlagsgesellschaft.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Witulski, B. (1992). PhD thesis, Technical University of Braunschweig, Germany.

